
MATLAB® Compiler SDK™

Python® User's Guide

R2016a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler SDK™ Python® User's Guide
© COPYRIGHT 2012–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

September 2015 Online only New for Version 6.1 (Release 2015b)
March 2016 Online only Revised for Version 6.2 (Release 2016a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Python Package Installation
1

System Requirements for Integration with MATLAB
Compiler SDK Python Packages . 1-2

Install a MATLAB Compiler SDK Python Package 1-3
With the Generated Installer . 1-3
Without the Generated Installer . 1-4

Python Integration
2

Integrate a Python Package . 2-2

Import Compiled Python Packages . 2-3

Initialize the MATLAB Runtime . 2-4
Provide MATLAB Runtime Startup Options 2-4
Start MATLAB Runtime with Compiled MATLAB Functions 2-5

Evaluate a Compiled MATLAB Function 2-6
Invoke a MATLAB Function that Returns a Single Output . . 2-6
Invoke a MATLAB Function that Returns Zero Outputs 2-7
Receive Multiple Results as Individual Variables 2-7
Receive Multiple Results as a Single Object 2-8

Evaluate a Compiled MATLAB Function Asynchronously . . 2-9

Integrate Python Packages on Mac OS X 2-11

iv Contents

Data Handling
3

MATLAB Arrays as Python Variables 3-2
Create MATLAB Arrays in Python . 3-2
MATLAB Array Attributes and Methods in Python 3-4
Multidimensional MATLAB Arrays in Python 3-4
Index Into MATLAB Arrays in Python 3-5
Slice MATLAB Arrays in Python . 3-5
Reshaping MATLAB Arrays in Python 3-6

Use MATLAB Arrays in Python . 3-8

Functions — Alphabetical List
4

1

Python Package Installation

• “System Requirements for Integration with MATLAB Compiler SDK Python
Packages” on page 1-2

• “Install a MATLAB Compiler SDK Python Package” on page 1-3

1 Python Package Installation

1-2

System Requirements for Integration with MATLAB Compiler SDK
Python Packages

MATLAB® Compiler SDK™ Python® package integration supports:

• Python 2.7
• Python 3.3
• Python 3.4

For more information on downloading and installing Python, see https://
www.python.org/.

Note: The installed version of Python must match the bitness of the machine on which
the application runs. For example, if running on a 64–bit Windows machine, you must
install the 64–bit version of Python.

https://www.python.org/
https://www.python.org/

 Install a MATLAB Compiler SDK Python Package

1-3

Install a MATLAB Compiler SDK Python Package
In this section...

“With the Generated Installer” on page 1-3
“Without the Generated Installer” on page 1-4

With the Generated Installer

The Library Compiler app generates an installer that installs the MATLAB Runtime and
the files required to install the generated Python package. The app places the installer in
the for_redistribution folder.

1 Copy the installer from the for_redistribution folder to the desired location.
2 Run the installer.
3 Note where the installer writes the Python package files.
4 When the installer finishes, open a command terminal in the folder containing the

Python package files.
5 Run the Python set up script.

python setup.py install

6 Set the required environment variables.

On Linux®:

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:mcrroot/runtime/glnxa64:

 mcrroot/bin/glnxa64:mcrroot/sys/os/glnxa64:

 mcrroot/sys/opengl/lib/glnxa64

setenv XAPPLRESDIR mcrroot/v90/X11/app-defaults

On OS X:

setenv DYLD_LIBRARY_PATH ${DYLD_LIBRARY_PATH}:mcrroot/runtime/maci64:

 mcrroot/sys/os/maci64:mcrroot/bin/maci64

Note: If LD_LIBRARY_PATH is not defined on Linux, remove
${LD_LIBRARY_PATH}: from the code to set the environment variables. Similarly,
on OS X, remove ${DYLD_LIBRARY_PATH}: if DYLD_LIBRARY_PATH is not defined.

Note: mcrroot is the full path to the MATLAB Runtime installation.

1 Python Package Installation

1-4

Note: Commands must be entered as a single line.

Without the Generated Installer

If you already have the MATLAB Runtime installed, you can just install the Python
package.

1 Copy the contents of the for_redistribution_files_only folder to the desired
location.

2 Open a command terminal in the folder containing the Python package files.
3 Run the Python set up script.

python setup.py install

4 Set the required environment variables.

On Linux:

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:mcrroot/runtime/glnxa64:

 mcrroot/bin/glnxa64:mcrroot/sys/os/glnxa64:

 mcrroot/sys/opengl/lib/glnxa64

setenv XAPPLRESDIR mcrroot/v90/X11/app-defaults

On OS X:

setenv DYLD_LIBRARY_PATH $DYLD_LIBRARY_PATH:mcrroot/runtime/maci64:

 mcrroot/sys/os/maci64:mcrroot/bin/maci64

Note: mcrroot is the full path to the MATLAB Runtime installation.

Note: Commands must be entered as a single line.

Related Examples
• “Import Compiled Python Packages” on page 2-3
• “Initialize the MATLAB Runtime” on page 2-4

2

Python Integration

• “Integrate a Python Package” on page 2-2
• “Import Compiled Python Packages” on page 2-3
• “Initialize the MATLAB Runtime” on page 2-4
• “Evaluate a Compiled MATLAB Function” on page 2-6
• “Evaluate a Compiled MATLAB Function Asynchronously” on page 2-9
• “Integrate Python Packages on Mac OS X” on page 2-11

2 Python Integration

2-2

Integrate a Python Package

To integrate a MATLAB Compiler SDK Python Package:

1 Install the compiled Python Package.

See “Install a MATLAB Compiler SDK Python Package” on page 1-3
2 In consultation with the MATLAB programmer, agree on the MATLAB function

signatures that comprise the services in the application.
3 Import the compiled Python package.

See “Import Compiled Python Packages” on page 2-3.
4 Write the Python code to initialize the MATLAB Runtime, and load the MATLAB

code.

See “Initialize the MATLAB Runtime” on page 2-4.
5 Create the required MATLAB data for function inputs and outputs.

See “MATLAB Arrays as Python Variables” on page 3-2.
6 Evaluate the MATLAB functions.

See “Evaluate a Compiled MATLAB Function” on page 2-6 or “Evaluate a
Compiled MATLAB Function Asynchronously” on page 2-9.

7 Terminate the MATLAB Runtime using the terminate() function of the generated
package.

 Import Compiled Python Packages

2-3

Import Compiled Python Packages

The MATLAB Compiler SDK Python target generates the Python code into a package
that must be imported to the Python runtime before you can use the compiled MATLAB
functions. You specify the package name and the namespace when compiling the
MATLAB functions.

• If you use the Library Compiler app, you specify the package name with the Library
Name field and the namespace with the Namespace field.

The Library Name field defaults to the name of the first MATLAB file listed in the
app. You can leave the Namespace field empty.

• If you use the mcc function, you specify the package name and namespace as part of
the -W python:namespace.packageName flag.

Specifying the namespace is optional.

For example, if you compile your MATLAB functions and specify the package named
addmatrix, you import it as follows:

import addmatrix

Related Examples
• “Create a Python Application with MATLAB Code”
• “Compile Python Packages with Library Compiler App”
• “Compile Python Packages from Command Line”

2 Python Integration

2-4

Initialize the MATLAB Runtime

When integrating compiled MATLAB functions into a Python application, your code must
initialize the MATLAB Runtime:

1 Optionally, provide a list of startup options to the MATLAB Runtime using the
initialize_runtime() function.

2 Start the MATLAB Runtime, and load a MATLAB Runtime instance using the
initialize() function of each compiled package used in the application.

Provide MATLAB Runtime Startup Options

Note: On Mac OS X, you must pass the MATLAB Runtime options to the
mwpython command when starting Python. Use -mlstartup followed by a comma-
separated list of MATLAB Runtime options. MATLAB Runtime options passed to
initialize_runtime() are ignored.

The MATLAB Runtime has two startup options that you can specify:

• -nojvm — disable the Java® Virtual Machine, which is enabled by default. This can
help improve the MATLAB Runtime performance.

• -nodisplay — on Linux, run the MATLAB Runtime without display functionality.

You specify these options before you initialize the compiled MATLAB functions. You do
so by calling the initialize_runtime() method of a generated Python package with
the MATLAB Runtime options. The list of MATLAB Runtime options is passed as a list
of strings. For example, to start the MATLAB Runtime for the package addmatrix with
no display and no Java Virtual Machine:

import addmatrix

addmatrix.initialize_runtime(['-nojvm', '-nodisplay'])

If your application uses multiple Python packages, you call initialize_runtime()
from only one package. The first call sets the run-time options for the MATLAB Runtime
session. Any subsequent calls are ignored.

 Initialize the MATLAB Runtime

2-5

Start MATLAB Runtime with Compiled MATLAB Functions

To evaluate a compiled MATLAB function, load it into the MATLAB Runtime. Do this by
calling the initialize() method of the generated Python package. The initialize()
method returns an object that can be used to evaluate the compiled MATLAB functions
in the package. For example, to start the MATLAB Runtime and load the MATLAB
functions in the addmatrix package, use:

import addmatrix

myAdder = addmatrix.initialize()

Note: If the initialize_runtime() function is not called prior to the initialize()
function, the MATLAB Runtime is started with no startup options.

More About
• “Integrate Python Packages on Mac OS X” on page 2-11

2 Python Integration

2-6

Evaluate a Compiled MATLAB Function

In this section...

“Invoke a MATLAB Function that Returns a Single Output” on page 2-6
“Invoke a MATLAB Function that Returns Zero Outputs” on page 2-7
“Receive Multiple Results as Individual Variables” on page 2-7
“Receive Multiple Results as a Single Object” on page 2-8

Evaluate a compiled MATLAB function using the Python object returned from the
initialize() function.

result1,...resultN = my_client.function_name(in_args, nargout=nargs,

 stdout=out_stream,

 stderr=err_stream)

• my_client — Name of object returned from initialize()
• function_name — Name of the function to invoke
• in_args — Comma-separated list of input arguments
• nargs — Number of expected results. The default value is 1.
• out_stream — Python StringIO object receiving the console output. The default is

to direct output to the console.
• err_stream — Python StringIO object receiving the error output. The default is to

direct output to the console.

Each variable on the left side of the function call is populated with a single return value.

Note: If you provide less than nargs variables on the left side of the function call, the
last listed variable will contain a list of the remaining results. For example

result1, result2 = myMagic.triple(5,nargout=3)

leaves result1 containing a single value and result2 containing a list with two values.

Invoke a MATLAB Function that Returns a Single Output

To invoke the MATLAB function result = mutate(m1, m2, m3) from the package
mutations, you use this code:

 Evaluate a Compiled MATLAB Function

2-7

import mutations

import matlab

myMutator = mutations.initialize()

m1 = matlab.double(...)

m2 = matlab.double(...)

m3 = matlab.double(...)

result = myMutator.mutate(m1,m2,m3)

Invoke a MATLAB Function that Returns Zero Outputs

To invoke the MATLAB function mutate(m1,m2,m3) from the package mutations, you
use this code:

import mutations

import matlab

myMutator = mutations.initialize()

m1 = matlab.double(...)

m2 = matlab.double(...)

m3 = matlab.double(...)

myMutator.mutate(m1,m2,m3,nargout=0)

Receive Multiple Results as Individual Variables

To invoke the MATLAB function c1,c2 = copy(o1,o2) from the package copier, use
this code:

>>> import copier

>>> import matlab

>>> myCopier = copier.initialize()

>>> c1,c2 = myCopier.copy("blue",10,nargout=2)

>>> print(c1)

"blue"

>>> print(c2)

10

2 Python Integration

2-8

Receive Multiple Results as a Single Object

To invoke the MATLAB function copies = copy(o1,o2) from the package copier,
use this code:

>>> import copier

>>> import matlab

>>> myCopier = copier.initialize()

>>> copies = myCopier.copy("blue",10,nargout=2)

>>> print(copies)

["blue",10]

Related Examples
• “Initialize the MATLAB Runtime” on page 2-4
• “Create a Python Application with MATLAB Code”

 Evaluate a Compiled MATLAB Function Asynchronously

2-9

Evaluate a Compiled MATLAB Function Asynchronously

Asynchronously evaluate a compiled MATLAB function that uses the Python object
returned from the initialize() function by passing async = True.

future = my_client.function_name(in_args, nargout=nargs,

 stdout=out_stream,

 stderr=err_stream,

 async=True)

• my_client — Name of object returned from initialize()
• function_name — Name of the function to invoke
• in_args — Comma-separated list of input arguments
• nargs — Number of results expected from the server
• out_stream — Python StringIO object receiving the console output
• err_stream — Python StringIO object receiving the error output

When the async keyword is set to True, the MATLAB function is placed into a
processing queue and a Python Future object is returned. You use the Future object to
retrieve the results when the MATLAB function is finished processing.

To invoke the MATLAB function c1,c2= copy(o1,o2) from the package copier
asynchronously, use the following code:

>>> import mutations

>>> import matlab

>>> myMutator = mutations.initialize()

>>> m1 = matlab.double(...)

>>> m2 = matlab.double(...)

>>> m3 = matlab.double(...)

>>> resultFuture = myMutator.mutate(m1,m2,m3, async=True)

>>> while !resultFuture.done():

... time.sleep(1)

...

>>> result = resultFuture.result()

Tip You can cancel asynchronous requests using the cancel() method of the Future
object.

2 Python Integration

2-10

Related Examples
• “Initialize the MATLAB Runtime” on page 2-4
• “Create a Python Application with MATLAB Code”

 Integrate Python Packages on Mac OS X

2-11

Integrate Python Packages on Mac OS X

To use MATLAB Compiler SDK Python packages on Mac OS X, use the mwpython script.
The mwpython script is located in the mcrroot\bin folder. mcrroot is the location of
your MATLAB Runtime installation.

For example, to run the example in “Create a Python Application with MATLAB Code”
you enter mwpython getmagic.py.

See Also
mwpython

3

Data Handling

• “MATLAB Arrays as Python Variables” on page 3-2
• “Use MATLAB Arrays in Python” on page 3-8

3 Data Handling

3-2

MATLAB Arrays as Python Variables

In this section...

“Create MATLAB Arrays in Python” on page 3-2
“MATLAB Array Attributes and Methods in Python” on page 3-4
“Multidimensional MATLAB Arrays in Python” on page 3-4
“Index Into MATLAB Arrays in Python” on page 3-5
“Slice MATLAB Arrays in Python” on page 3-5
“Reshaping MATLAB Arrays in Python” on page 3-6

The matlab Python package provides array classes to represent arrays of MATLAB
numeric types as Python variables.

Create MATLAB Arrays in Python

You can create MATLAB numeric arrays in a Python session by calling constructors from
the matlab Python package (for example, matlab.double, matlab.int32). The name
of the constructor indicates the MATLAB numeric type. You can pass MATLAB arrays as
input arguments to MATLAB functions called from Python. When a MATLAB function
returns a numeric array as an output argument, the array is returned to Python.

You can initialize the array with an optional initializer input argument that contains
numbers. The initializer argument must be a Python sequence type such as a list
or a tuple. The optional size input argument sets the size of the initialized array. To
create multidimensional arrays, specify initializer to contain multiple sequences of
numbers, or specify size to be multidimensional. You can create a MATLAB array of
complex numbers by setting the optional is_complex keyword argument to True. The
mlarray module provides the MATLAB array constructors listed in the table.

Class from matlab Package Constructor Call in Python MATLAB Numeric Type

matlab.double matlab.double(

initializer=None,

size=None,

is_complex=False)

Double precision

matlab.single matlab.single(

initializer=None,

size=None,

is_complex=False)

Single precision

 MATLAB Arrays as Python Variables

3-3

Class from matlab Package Constructor Call in Python MATLAB Numeric Type

matlab.int8 matlab.int8(

initializer=None,

size=None,

is_complex=False)

8-bit signed integer

matlab.int16 matlab.int16(

initializer=None,

size=None,

is_complex=False)

16-bit signed integer

matlab.int32 matlab.int32(

initializer=None,

size=None,

is_complex=False)

32-bit signed integer

matlab.int64a matlab.int64(

initializer=None,

size=None,

is_complex=False)

64-bit signed integer

matlab.uint8 matlab.uint8(

initializer=None,

size=None,

is_complex=False)

8-bit unsigned integer

matlab.uint16 matlab.uint16(

initializer=None,

size=None,

is_complex=False)

16-bit unsigned integer

matlab.uint32 matlab.uint32(

initializer=None,

size=None,

is_complex=False)

32-bit unsigned integer

matlab.uint64b matlab.uint64(

initializer=None,

size=None,

is_complex=False)

64-bit unsigned integer

matlab.logical matlab.logical(

initializer=None,

size=None)
c

Logical

a. In Python 2.7 on Windows, matlab.int64 is converted to int32 in MATLAB. Also, MATLAB cannot
return an int64 array to Python.

b. In Python 2.7 on Windows, matlab.uint64 is converted to uint32 in MATLAB. Also, MATLAB cannot
return a uint64 array to Python.

3 Data Handling

3-4

c. Logicals cannot be made into an array of complex numbers.

When you create an array with N elements, the size is 1-by-N because it is a MATLAB
array.

import matlab

A = matlab.int8([1,2,3,4,5])

print(A.size)

(1, 5)

The initializer is a Python list containing five numbers. The MATLAB array size is 1-
by-5, indicated by the tuple (1,5).

MATLAB Array Attributes and Methods in Python

All MATLAB arrays created with matlab package constructors have the attributes and
methods listed in the table below:

Attribute or Method Purpose

size Size of array returned as a tuple
reshape(size) Reshape the array as specified by the

sequence size

Multidimensional MATLAB Arrays in Python

In Python, you can create multidimensional MATLAB arrays of any numeric type. Use
two Python lists of floats to create a 2-by-5 MATLAB array of doubles.

import matlab

A = matlab.double([[1,2,3,4,5], [6,7,8,9,10]])

print(A)

[[1.0,2.0,3.0,4.0,5.0],[6.0,7.0,8.0,9.0,10.0]]

The size attribute of A shows it is a 2-by-5 array.

print(A.size)

(2, 5)

 MATLAB Arrays as Python Variables

3-5

Index Into MATLAB Arrays in Python

You can index into MATLAB arrays just as you can index into Python lists and tuples.

import matlab

A = matlab.int8([1,2,3,4,5])

print(A[0])

[1,2,3,4,5]

The size of the MATLAB array is (1,5); therefore, A[0] is [1,2,3,4,5]. Index into the
array to get 3.

print(A[0][2])

3

Python indexing is zero-based. When you access elements of MATLAB arrays in a Python
session, use zero-based indexing.

This example shows how to index into a multidimensional MATLAB array.

A = matlab.double([[1,2,3,4,5], [6,7,8,9,10]])

print(A[1][2])

8.0

Slice MATLAB Arrays in Python

You can slice MATLAB arrays just as you can slice Python lists and tuples.

import matlab

A = matlab.int8([1,2,3,4,5])

print(A[0][1:4])

[2,3,4]

You can assign data to a slice. This example shows an assignment from a Python list to
the array.

A = matlab.double([[1,2,3,4],[5,6,7,8]])

A[0] = [10,20,30,40]

print(A)

3 Data Handling

3-6

[[10.0,20.0,30.0,40.0],[5.0,6.0,7.0,8.0]]

You can assign data from another MATLAB array, or from any Python iterable that
contains numbers.

You can specify slices for assignment, as shown in this example.

A = matlab.int8([1,2,3,4,5,6,7,8])

A[0][2:4] = [30,40]

A[0][6:8] = [70,80]

print(A)

[[1,2,30,40,5,6,70,80]]

Note: Slicing MATLAB arrays behaves differently from slicing a Python list. Slicing a
MATLAB array returns a view instead of a shallow copy.

Given a MATLAB array and a Python list with the same values, assigning a slice results
in different results.

>>>mlarray = matlab.int32([[1,2],[3,4],[5,6]])

>>>py_list = [[1,2],[3,4],[5,6]]

>>>mlarray[0] = mlarray[0][::-1]

>>>py_list[0] = py_list[0][::-1]

>>>mlarray[0]

matlab.int32([[2,2],[3,4],[5,6]])

>>>py_list

[[2,1],[3,4],[5,6]]

Reshaping MATLAB Arrays in Python

You can reshape a MATLAB array in Python with the reshape method. The input
argument, size, must be a sequence that does not change the number of elements in the
array. Use reshape to change a 1-by-9 MATLAB array to 3-by-3.

import matlab

A = matlab.int8([1,2,3,4,5,6,7,8,9])

A.reshape((3,3))

print(A)

[[1,4,7],[2,5,8],[3,6,9]]

 MATLAB Arrays as Python Variables

3-7

Related Examples
• “Use MATLAB Arrays in Python” on page 3-8

3 Data Handling

3-8

Use MATLAB Arrays in Python

This example shows how to use MATLAB arrays in Python.

The matlab package provides new Python data types to create arrays that can be passed
to MATLAB functions. The matlab package can create arrays of any MATLAB numeric
or logical type from Python sequence types. Multidimensional MATLAB arrays are
supported.

Create a MATLAB array in Python, and call a MATLAB function on it.

import matlab

from production_server import client

client_obj = client.MWHttpClient("http://localhost:9910")

x = matlab.double([1,4,9,16,25])

print(client_obj.myArchive.sqrt(x))

[[1.0,2.0,3.0,4.0,5.0]]

You can use matlab.double to create an array of doubles given a Python list that
contains numbers. You can call a MATLAB function such as sqrt on x, and the return
value is another matlab.double array.

Create a multidimensional array. The magic function returns a 2-D array to Python
scope.

a = client_obj.myArchive.magic(6)

print(a)

[[35.0,1.0,6.0,26.0,19.0,24.0],[3.0,32.0,7.0,21.0,23.0,25.0],

 [31.0,9.0,2.0,22.0,27.0,20.0],[8.0,28.0,33.0,17.0,10.0,15.0],

 [30.0,5.0,34.0,12.0,14.0,16.0],[4.0,36.0,29.0,13.0,18.0,11.0]]

Call the tril function to get the lower triangular portion of a.

b = client_obj.myArchive.tril(a)

print(b)

[[35.0,0.0,0.0,0.0,0.0,0.0],[3.0,32.0,0.0,0.0,0.0,0.0],

 [31.0,9.0,2.0,0.0,0.0,0.0],[8.0,28.0,33.0,17.0,0.0,0.0],

 Use MATLAB Arrays in Python

3-9

 [30.0,5.0,34.0,12.0,14.0,0.0],[4.0,36.0,29.0,13.0,18.0,11.0]]

More About
• “MATLAB Arrays as Python Variables” on page 3-2

4

Functions — Alphabetical List

4 Functions — Alphabetical List

4-2

mwpython
Start a Python session using a MATLAB Compiler SDK Python package on Mac OS X

Syntax

mwpython [-verbose] [py_args] [-mlstartup opt[,opt]]

python_scriptname

mwpython [-verbose] [py_args] [-mlstartup opt[,opt]] -c cmd

mwpython [-verbose] [py_args] [-mlstartup opt[,opt]] -m mod

Description

mwpython [-verbose] [py_args] [-mlstartup opt[,opt]]

python_scriptname starts a Python session that executes a Python script.

mwpython [-verbose] [py_args] [-mlstartup opt[,opt]] -c cmd starts
Python session that executes a Python command.

mwpython [-verbose] [py_args] [-mlstartup opt[,opt]] -m mod starts a
Python session that executes a Python module.

Input Arguments

py_args — Python arguments

Python arguments, specified as a comma-separated list.

opt[,opt] — MATLAB Runtime startup options
-nojvm | -nodisplay | -logfile

MATLAB Runtime startup options, specified as a comma-separated list.

• -nojvm — disable the Java Virtual Machine, which is enabled by default. This can
help improve the MATLAB Runtime performance.

• -nodisplay — on Linux, run the MATLAB Runtime without display functionality.

 mwpython

4-3

python_scriptname — Python script to execute

Python script to execute, specified as a string with a .py extension.

cmd — Python command to execute

Python command to execute, specified as a string.

mod — Python module to execute

Python module to execute, specified as a string.

Examples

Execute Python script with in verbose mode

mwpython -verbose myfile.py

Execute Python module with arguments

mwpython -m mymod arg1 arg2

Introduced in R2015b

